Homework 5 MTH 869 Algebraic Topology

Joshua Ruiter

February 12, 2018

Lemma 0.1 (for Exercise 1.3.5, part one). Let $f: X \to Y$ be a continuous bijection, and suppose that X is compact and Y is Hausdorff. Then f has a continuous inverse. (As a consequence, f is a homeomorphism.)

Proof. Let $g = f^{-1}$. Suppose $V \subset X$ is closed. Then V is compact since X is compact. Then f(V) is compact since f is continuous. Since f is Hausdorff, f(V) is closed. Then since $f(V) = g^{-1}(V)$, $g^{-1}(V)$ is closed. Hence the preimage of any closed set under f is closed, so f is continuous.

Proposition 0.2 (Exercise 1.3.5, part one). Let X be the subspace of \mathbb{R}^2 consisting of the four sides of the square $[0,1] \times [0,1]$ together with the segments of the vertical lines $x = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ inside the square. For every covering space $p: \widetilde{X} \to X$ there is some neighborhood of the left edge of X that lifts homeomorphically to \widetilde{X} .

Proof. Let S be the set of $y \in [0, 1]$ such that there exists a neighborhood of $\{0\} \times [0, y]$ in X that lifts homeomorphically to \widetilde{X} . Note that S is not empty, because the point (0, 0) has an evenly covered neighborhood, which has a homeomorphic lift. Thus we can define $y_0 = \sup S$. If we can show that $1 \in S$, then by definition of S there is an open neighborhood of the left edge $\{0\} \times [0, 1]$ that has a homeomorphic lift.

Suppose that $y_0 < 1$, and let U be an open neighborhood of $\{0\} \times [0, y_0]$ with homeomorphic lift $\widetilde{U} \subset \widetilde{X}$, and let \widetilde{y}_0 be the unique preimage of $(0, y_0)$ in \widetilde{U} . Let V be an evenly covered neighborhood of $(0, y_0)$, so $p^{-1}(V) = \bigsqcup_{i \in I} \widetilde{V}_i$ where each \widetilde{V}_i maps homeomorphically to V under p. Choose the unique i so that $\widetilde{y}_0 \in \widetilde{V}_i$. We claim that there is a homeomorphic lift of a neighborhood of [0, y] where $y > y_0$, where this lift is contained in $\widetilde{U} \cup \widetilde{V}_i$.

Since $p(\widetilde{U}) = U$ and $p(\widetilde{V}_i) = V$, it is immediate that $p|_{\widetilde{U} \cup \widetilde{V}_i} : \widetilde{U} \cup \widetilde{V}_i \to U \cup V$ is surjective. Of course, any restriction of p is continuous. If we can show that this restriction of p is injective, then it is a homeomorphism by the lemma above. To show that $p|_{\widetilde{U} \cup \widetilde{V}_i}$ is injective, we need to show that for $a, b \in \widetilde{U} \cup \widetilde{V}_i$ we have the implication

$$p(a) = p(b) \implies a = b$$

Since $p|_{\widetilde{U}}$ and $p|_{\widetilde{V}_i}$ are injective, if a,b are both in \widetilde{U} or both in \widetilde{V}_i , the above implication holds. So we just need to consider the case where $a \in \widetilde{U} \setminus \widetilde{V}_i$ and $b \in \widetilde{V}_i \setminus \widetilde{U}$.

First, suppose that p(a) = p(b) = (0, y), that is, the image is in the left edge. Let $\gamma: I \to X$ be the straight line path from (0,0) to (0,y). Then there exist path lifts $\widetilde{\gamma}_1: I \to \widetilde{X}$ and $\widetilde{\gamma}_2: I \to \widetilde{X}$ such that $\widetilde{\gamma}_1(0) = \widetilde{\gamma}_2(0) = p|_{\widetilde{U}}^{-1}(0,0)$, and $\widetilde{\gamma}_1(1) = a$ and $\widetilde{\gamma}_2(1) = b$.

$$I \xrightarrow{\widetilde{\gamma}_{2}} X \qquad \qquad X \qquad \qquad \widetilde{X} \qquad \qquad \widetilde{X} \qquad \qquad \widetilde{\chi}_{2} \qquad \downarrow p \qquad \qquad \downarrow p \qquad$$

Then by the uniqueness of path lifting (Proposition 1.30 in Hatcher), this implies that a = b. Thus $p|_{\widetilde{U} \cup \widetilde{V}_i}$ is injective on the left edge.

Now we show that $p|_{\widetilde{U}\cup\widetilde{V}_i}$ is injective on the rest of $\widetilde{U}\cup\widetilde{V}_i$ by contradiction. For $\epsilon>0$, define

$$U_{\epsilon} = U \cap ([0, \epsilon] \times [0, 1]) \qquad \widetilde{U}_{\epsilon} = p|_{\widetilde{U}}^{-1}(U_{\epsilon})$$
$$V_{\epsilon} = V \cap ([0, \epsilon] \times [0, 1]) \qquad \widetilde{V}_{i, \epsilon} = p_{\widetilde{V}_{i}}^{-1}(V_{\epsilon})$$

If for any $\epsilon > 0$, p is injective on $U_{\epsilon} \cup V_{\epsilon}$, then $p|_{\widetilde{U}_{\epsilon} \cup \widetilde{V}_{i,\epsilon}}$ is injective and hence $\widetilde{U}_{\epsilon} \cup \widetilde{V}_{i,\epsilon}$ is a homeomorphic lift of $U_{\epsilon} \cup V_{\epsilon}$ and we're done. So suppose otherwise. Then for every $n \in \mathbb{N}$, there exist $a_n \in \widetilde{U}_{\frac{1}{n}} \setminus \widetilde{V}_{i,\frac{1}{n}}$ and $b_n \in \widetilde{V}_{i,\frac{1}{n}} \setminus \widetilde{U}_{\frac{1}{n}}$ so that $p(a_n) = p(b_n)$ and $a_n \neq b_n$. Then the sequences a_n and b_n must have convergent subsequences a_{nk} and b_{nk} with limits

$$a = \lim_{k \to \infty} a_{n_k} \qquad b = \lim_{k \to \infty} b_{n_k}$$

Since $p(a_n)$ approaches the left edge, p(a) and p(b) are on the left edge. By continuity of p, we have p(a) = p(b). However, $a_n \in \widetilde{U} \setminus \widetilde{V}_i$ implies that $a \in U \setminus V$. Likewise, $b_n \in \widetilde{V}_i \setminus \widetilde{U}$ implies that $b \in V \setminus U$. Thus we have a, b so that p(a) = p(b) on the left edge but $a \neq b$. Since we already showed that $p|_{\widetilde{U} \cup \widetilde{V}_i}$ is injective on the left edge, this implies is a contradiction, so we conclude that $p|_{\widetilde{U} \cup \widetilde{V}_i}$ is injective.

Now that we have shown that $p|_{\widetilde{U}\cup\widetilde{V}_i}$ is injective, it is a homeomorphism onto $U\cup V$. Since V is an open neighborhood of $(0,y_0)$ and $y_0<1$, V contains some point (0,y) with $y>y_0$. Thus $U\cup V$ is a neighborhood of [0,y] that lifts homeomorphically to \widetilde{X} . This contradicts the fact that y_0 is the supremum of S, so we conclude that $\sup S$ cannot be less than one. Since S is a subset of [0,1], this means that $\sup S=1$. Thus by definition of S, there is an open neighborhood of the left edge that lifts homeomorphically to \widetilde{X} .

Proposition 0.3 (Exercise 1.3.5, part two). Let X be the subspace of \mathbb{R}^2 consisting of the four sides of the square $[0,1] \times [0,1]$ together with the segments of the vertical lines $x = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ inside the square. Then X has no simply connected covering space.

Proof. Let $p:\widetilde{X}\to X$ be a covering map. Using part one, let A be an open neighborhood of the left edge with a homeomorphic lift $\widetilde{A}\subset\widetilde{X}$.

We claim that there exists $K \in \mathbb{N}$ so that $\left[0, \frac{1}{K}\right] \times [0, 1] \subset A$. Suppose there is no such K. Then for every $k \in \mathbb{N}$, there exists $\left(\frac{1}{k}, y_k\right) \in X \setminus A$. Since this sequence is bounded, it has a convergent subsequence, which must converge to a point on the left edge $\{0\} \times [0, 1]$. But A is open, so $X \setminus A$ is closed, so $X \setminus A$ contains its limit points. This contradicts the fact that A covers the left edge. Thus the claimed K exists. This implies that A contains the nontrivial rectangular loop

$$\gamma = \left(\{0\} \times [0,1]\right) \cup \left(\left\{\frac{1}{K+1}\right\} \times [0,1]\right) \cup \left(\left[0,\frac{1}{K+1}\right] \times \{0\}\right) \cup \left(\left[0,\frac{1}{K+1}\right] \times \{1\}\right)$$

which lifts to a nontrivial loop $\widetilde{\gamma}$ in \widetilde{A} . Then thinking of $\widetilde{\gamma}$ as a loop in the larger space \widetilde{X} , we see that $p_*[\widetilde{\gamma}] = [\widetilde{\gamma} \circ p] = [\gamma]$, so the image of $\pi_1(\widetilde{X})$ is nontrivial in $\pi_1(X)$. This implies that $\pi_1(\widetilde{X})$ cannot be trivial, so \widetilde{X} is not simply connected.

Proposition 0.4 (Exercise 1.3.7). Let Y be the quasi-circle consisting of the closed subspace of \mathbb{R}^2 given by a piece of the graph of $y = \sin(1/x)$ and the segment [-1,1] with an arc connecting the two pieces. Induce a map $f: Y \to S^1$ by collapsing the segment [-1,1] Then f does not lift to the covering space $\mathbb{R} \to S^1$, even though $\pi_1(Y) = 0$. Consequently, local path-connectedness of Y is a necessary hypothesis for the lifting criterion.

Proof. We think of Y as the union of three pieces $Y = A \cup B \cup C$, where A is the vertical segment [-1,1], B is connecting arc, and C is the piece of the graph of $\sin(1/x)$. We have a quotient map $q: Y \to Y/A$ by collapsing A to a point, which we denote by a. Then we have a map $g: Y/A \to S^1$ by leaving a and B fixed, and projecting down the graph of $\sin(1/x)$ to the x-axis. By doing a rotation if necessary, we can assume that g(a) = 1 (we are thinking of S^1 as the unit circle in \mathbb{C}). Then the map f is the composition $f = g \circ q$.

Let $p: \mathbb{R} \to S^1$ be the usual covering map $t \mapsto e^{it}$, and suppose there is a lift $\widetilde{f}: Y \to \mathbb{R}$.

$$Y \xrightarrow{\widetilde{f}} X^{1} \downarrow^{p}$$

$$Y \xrightarrow{f} S^{1}$$

For $\epsilon > 0$, define

$$U_{\epsilon} = \{ y \in Y : \text{dist}(y, A) > \epsilon \}$$

$$V_{\epsilon} = \{ y \in Y : \text{dist}(y, A) < \epsilon \}$$

That is, U_{ϵ} is an open subset of Y covering almost all of Y, except for avoiding a ϵ -neighborhood of A, and V is an ϵ -neighborhood of A. Note that $U_{\epsilon} \cup V_{2\epsilon} = Y$. Then $f(U_{\epsilon})$ covers almost all of S^1 , and $f(V_{\epsilon/2})$ is a small neighborhood of 1.

$$p\widetilde{f}(U_{\epsilon}) = f(U_{\epsilon}) = \{x \in S^1 : \operatorname{dist}(x,1) > \epsilon\}$$
$$p\widetilde{f}(V_{2\epsilon}) = f(V_{2\epsilon}) = \{x \in S^1 : \operatorname{dist}(x,1) < 2\epsilon\}$$

This says that $\widetilde{f}(U_{\epsilon})$ is an interval of length just a bit smaller than 2π that avoids $f(a) = 2\pi k$, and $\widetilde{f}(V_{\epsilon})$ is an small interval containing $f(a) = 2\pi k$. Since U_{ϵ} and $V_{2\epsilon}$ over lap, the images overlap. Thus the union

 $\widetilde{f}(Y) = \widetilde{f}(U_{\epsilon}) \cup \widetilde{f}(V_{2\epsilon})$

is a single open interval of length greater than 2π . So there exist $\alpha, \beta \in \widetilde{f}(Y)$ such that $|\alpha - \beta| = 2\pi$. Since $\widetilde{f}(U_{\epsilon})$ and $\widetilde{f}(V_{2\epsilon})$ are both intervals of length less than 2π , α and β can't be in the same one. WLOG assume $\alpha \in \widetilde{f}(U_{\epsilon}) \setminus \widetilde{f}(V_{2\epsilon})$ and $\beta \in \widetilde{f}(V_{2\epsilon}) \setminus \widetilde{f}(U_{\epsilon})$. Then there exist $y_{\alpha} \in U_{\epsilon} \setminus V_{2\epsilon}$ and $y_{\beta} \in V_{2\epsilon} \setminus U_{\epsilon}$ with $\widetilde{f}(y_{\alpha}) = \alpha$ and $\widetilde{f}(y_{\beta}) = \beta$. Then

$$|\alpha - \beta| = 2\pi \implies p(\alpha) = p(\beta) \implies p\widetilde{f}(y_{\alpha}) = p\widetilde{f}(y_{\beta}) \implies f(y_{\alpha}) = f(y_{\beta})$$

By construction of U_{ϵ} , $y_{\alpha} \in U_{\epsilon}$ implies that y_{α} is not in A. Since f is injective except for values in A, this implies that $y_{\alpha} = y_{\beta}$, which contradicts the fact that y_{α} and y_{β} lie in disjoint neighborhoods of Y. Therefore, no lift \widetilde{f} exists.

Proposition 0.5 (Exercise 1.3.8). Let $p_X : \widetilde{X} \to X$ and $p_Y : \widetilde{Y} \to Y$ be simply connected covering spaces of the path connected, locally path connected spaces X and Y respectively. If $X \simeq Y$, then $\widetilde{X} \simeq \widetilde{Y}$.

Proof. Let $f: Y \to X$ and $g: Y \to X$ so that $fg \simeq \mathrm{Id}_Y$ and $gf \simeq \mathrm{Id}_X$.

$$\begin{array}{ccc}
\widetilde{X} & \widetilde{Y} \\
\downarrow^{p_X} & \downarrow^{p_Y} \\
X & \stackrel{f}{\longleftarrow} Y
\end{array}$$

Since \widetilde{X} and \widetilde{Y} are simply connected, the induced maps $(p_X)_*$ and $(p_Y)_*$ are trivial. Then by Proposition 1.33, there exist lifts $\widetilde{f}:\widetilde{X}\to\widetilde{Y}$ and $\widetilde{g}:\widetilde{Y}\to\widetilde{X}$ so that the following diagrams commute.

$$\widetilde{Y} \xrightarrow{\widetilde{g}} \widetilde{X} \qquad \widetilde{Y} \xrightarrow{\widetilde{f}} \widetilde{Y} \downarrow_{p_{Y}}$$

$$\widetilde{Y} \xrightarrow{gp_{Y}} X \qquad \widetilde{X} \xrightarrow{fp_{X}} Y$$

Then notice that

$$p_X \widetilde{g} \widetilde{f} = g p_Y \widetilde{f} = g f p_X$$
$$p_Y \widetilde{f} \widetilde{g} = f p_X \widetilde{g} = f g p_Y$$

that is, the following diagrams commute:

$$\widetilde{X} \qquad \widetilde{Y}$$

$$\widetilde{g}\widetilde{f} \qquad \downarrow p_X \qquad \widetilde{f}\widetilde{g} \qquad \downarrow p_Y$$

$$\widetilde{X} \xrightarrow{gfp_X} X \qquad \widetilde{Y} \xrightarrow{fgp_Y} Y$$

We have the obvious lifts

Note that

$$gf \simeq \operatorname{Id}_X \implies gfp_X \simeq p_X$$

 $fg \simeq \operatorname{Id}_Y \implies fgp_Y \simeq p_Y$

So we have homotopies $h_t: \widetilde{X} \to X$ and $H_t: \widetilde{Y} \to Y$ with $h_0 = p_X, h_1 = gfp_X$ and $H_0 = p_Y, H_1 = fgp_Y$. We have a lift $\widetilde{h}_0 = \operatorname{Id}_{\widetilde{X}}$ of h_0 and a lift $\operatorname{Id}_{\widetilde{Y}}$ of \widetilde{H}_0 , so by Proposition 1.30 we have homotopy lifts h_t and H_t making the following diagrams commute.

$$\widetilde{X} \qquad \qquad \widetilde{Y} \\ \widetilde{h}_{t} \stackrel{\widetilde{h}_{t}}{\longrightarrow} V \qquad \qquad \widetilde{H}_{t} \stackrel{\widetilde{H}_{t}}{\longrightarrow} V$$

$$\widetilde{X} \xrightarrow{h_{t}} X \qquad \qquad \widetilde{Y} \xrightarrow{H_{t}} Y$$

That is, $p_X \widetilde{h}_1 = h_1 = gfp_X$ and $p_Y \widetilde{H}_1 = H_1 = fgp_Y$. So we have two lifts of gfp_X , namely \widetilde{h}_1 and \widetilde{gf} . Likewise, we have two lifts of fgp_Y , which are \widetilde{H}_1 and \widetilde{fg} . By uniqueness of the homotopy lifts, this implies that $\widetilde{h}_1 = \widetilde{gf}$ and $\widetilde{H}_1 = \widetilde{fg}$. Hence $\widetilde{gf} \simeq \operatorname{Id}_{\widetilde{X}}$ and $\widetilde{fg} \simeq \operatorname{Id}_{\widetilde{Y}}$, so $\widetilde{X} \simeq \widetilde{Y}$ via the homotopy equivalence \widetilde{f} .

Lemma 0.6 (for Exercise (b)). There is no injective group homomorphism $\mathbb{Z} * \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$.

Proof. Suppose $\phi: \mathbb{Z} * \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is an injective group homomorphism. Let $\mathbb{Z} * \mathbb{Z}$ be generated by x, y. Then since $\mathbb{Z} \times \mathbb{Z}$ is abelian,

$$\phi(yx) = \phi(y)\phi(x) = \phi(x)\phi(y) = \phi(xy)$$

Because ϕ is injective, this implies xy = yx, which is not true in $\mathbb{Z} * \mathbb{Z}$.

Proposition 0.7 (Exercises (a),(b),(c)). Consider the following four spaces: $S^1 \times S^1$, $S^1 \times \mathbb{R}$, and $\mathbb{R}^2 \setminus \{x,y\}$ where x,y are two distinct points in \mathbb{R}^2 . Then

- a) $S^1 \times S^1$ is not a covering space of any of the other three.
- b) $\mathbb{R}^2 \setminus \{x,y\}$ is not a covering space of any of the other three.
- c) S^2 cannot be a covering space of any of the other three.

- *Proof.* First note that $\pi_1(S^1 \times S^1) \cong \mathbb{Z} \times \mathbb{Z}$, $\pi_1(S^1 \times \mathbb{R}) \cong \mathbb{Z}$, $\pi_1(S^2) \cong 0$, and $\pi_1(\mathbb{R}^2 \setminus \{x, y\} \cong \mathbb{Z} * \mathbb{Z}$. Also, the universal cover of $S^1 \times S^1$ is $\mathbb{R} \times \mathbb{R}$, the universal cover of S^2 is itself, and the universal cover of $S^1 \times \mathbb{R}$ is $\mathbb{R} \times \mathbb{R}$.
- (a) A covering map p from $S^1 \times S^1$ to S^2 or $S^1 \times \mathbb{R}$ would induce an injective homomorphism $\mathbb{Z} \times \mathbb{Z} \to 0$ or $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ respectively, neither of which is possible. A covering map from $S^1 \times S^1$ to $\mathbb{R} \setminus \{x,y\}$ would induce an injective group homomorphism $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$. If such a homomorphism existed, then $\mathbb{Z} \times \mathbb{Z}$ would have a subgroup isomorphic to $\mathbb{Z} \times \mathbb{Z}$. However, every subgroup of a free group is free, so this is a contradiction.
- (b) A covering map from $\mathbb{R}^2 \setminus \{x, y\}$ would induce an injective homomorphism from $\mathbb{Z} * \mathbb{Z}$, but this group does not inject into any of $\mathbb{Z} \times \mathbb{Z}$, 0, or \mathbb{Z} , so $\mathbb{R}^2 \setminus \{x, y\}$ cannot be a covering space of any of the other three.
- (c) If S^2 is a covering space of any of the other three, then since S^2 is simply connected it is isomorphic as a cover to the universal cover. Since S^2 is not homeomorphic to \mathbb{R}^2 , the universal cover for $S^1 \times S^1$ and $S^1 \times \mathbb{R}$, S^2 is not a cover of either of the those. S^2 cannot be a covering space of $\mathbb{R}^2 \setminus \{x,y\}$ because the image of a continuous map from S^2 must be comact, so there is no continuous surjective map $S^2 \to \mathbb{R}^2 \setminus \{x,y\}$.