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Lemma 0.1 (for Exercise 1.3.5, part one). Let f : X → Y be a continuous bijection, and
suppose that X is compact and Y is Hausdorff. Then f has a continuous inverse. (As a
consequence, f is a homeomorphism.)

Proof. Let g = f−1. Suppose V ⊂ X is closed. Then V is compact since X is compact.
Then f(V ) is compact since f is continuous. Since Y is Hausdorff, f(V ) is closed. Then
since f(V ) = g−1(V ), g−1(V ) is closed. Hence the preimage of any closed set under g is
closed, so g is continuous.

Proposition 0.2 (Exercise 1.3.5, part one). Let X be the subspace of R2 consisting of the four
sides of the square [0, 1]× [0, 1] together with the segments of the vertical lines x = 1

2
, 1
3
, 1
4
, . . .

inside the square. For every covering space p : X̃ → X there is some neighborhood of the
left edge of X that lifts homeomorphically to X̃.

Proof. Let S be the set of y ∈ [0, 1] such that there exists a neighborhood of {0} × [0, y]

in X that lifts homeomorphically to X̃. Note that S is not empty, because the point (0, 0)
has an evenly covered neighborhood, which has a homeomorphic lift. Thus we can define
y0 = supS. If we can show that 1 ∈ S, then by definition of S there is an open neighborhood
of the left edge {0} × [0, 1] that has a homeomorphic lift.

Suppose that y0 < 1, and let U be an open neighborhood of {0} × [0, y0] with homeo-

morphic lift Ũ ⊂ X̃, and let ỹ0 be the unique preimage of (0, y0) in Ũ . Let V be an evenly

covered neighborhood of (0, y0), so p−1(V ) =
⊔
i∈I Ṽi where each Ṽi maps homeomorphically

to V under p. Choose the unique i so that ỹ0 ∈ Ṽi. We claim that there is a homeomorphic
lift of a neighborhood of [0, y] where y > y0, where this lift is contained in Ũ ∪ Ṽi.

Since p(Ũ) = U and p(Ṽi) = V , it is immediate that p|Ũ∪Ṽi : Ũ ∪ Ṽi → U ∪V is surjective.
Of course, any restriction of p is continuous. If we can show that this restriction of p is
injective, then it is a homeomorphism by the lemma above. To show that p|Ũ∪Ṽi is injective,

we need to show that for a, b ∈ Ũ ∪ Ṽi we have the implication

p(a) = p(b) =⇒ a = b
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Since p|Ũ and p|Ṽi are injective, if a, b are both in Ũ or both in Ṽi, the above implication

holds. So we just need to consider the case where a ∈ Ũ \ Ṽi and b ∈ Ṽi \ Ũ .
First, suppose that p(a) = p(b) = (0, y), that is, the image is in the left edge. Let

γ : I → X be the straight line path from (0, 0) to (0, y). Then there exist path lifts

γ̃1 : I → X̃ and γ̃2 : I → X̃ such that γ̃1(0) = γ̃2(0) = p|−1
Ũ

(0, 0), and γ̃1(1) = a and

γ̃2(1) = b.

X̃ X̃

I X I X

p p

γ

γ̃2

γ

γ̃2

Then by the uniqueness of path lifting (Proposition 1.30 in Hatcher), this implies that a = b.
Thus p|Ũ∪Ṽi is injective on the left edge.

Now we show that p|Ũ∪Ṽi is injective on the rest of Ũ ∪ Ṽi by contradiction. For ε > 0,
define

Uε = U ∩ ([0, ε]× [0, 1]) Ũε = p|−1
Ũ

(Uε)

Vε = V ∩ ([0, ε]× [0, 1]) Ṽi,ε = p−1
Ṽi

(Vε)

If for any ε > 0, p is injective on Uε ∪ Vε, then p|Ũε∪Ṽi,ε is injective and hence Ũε ∪ Ṽi,ε is a
homeomorphic lift of Uε ∪ Vε and we’re done. So suppose otherwise. Then for every n ∈ N,
there exist an ∈ Ũ 1

n
\ Ṽi, 1

n
and bn ∈ Ṽi, 1

n
\ Ũ 1

n
so that p(an) = p(bn) and an 6= bn. Then the

sequences an and bn must have convergent subsequences ank and bnk with limits

a = lim
k→∞

ank b = lim
k→∞

bnk

Since p(an) approaches the left edge, p(a) and p(b) are on the left edge. By continuity of p,

we have p(a) = p(b). However, an ∈ Ũ \ Ṽi implies that a ∈ U \ V . Likewise, bn ∈ Ṽi \ Ũ
implies that b ∈ V \U . Thus we have a, b so that p(a) = p(b) on the left edge but a 6= b. Since
we already showed that p|Ũ∪Ṽi is injective on the left edge, this implies is a contradiction, so
we conclude that p|Ũ∪Ṽi is injective.

Now that we have shown that p|Ũ∪Ṽi is injective, it is a homeomorphism onto U ∪ V .
Since V is an open neighborhood of (0, y0) and y0 < 1, V contains some point (0, y) with

y > y0. Thus U ∪ V is a neighborhood of [0, y] that lifts homeomorphically to X̃. This
contradicts the fact that y0 is the supremum of S, so we conclude that supS cannot be less
than one. Since S is a subset of [0, 1], this means that supS = 1. Thus by definition of S,

there is an open neighborhood of the left edge that lifts homeomorphically to X̃.

Proposition 0.3 (Exercise 1.3.5, part two). Let X be the subspace of R2 consisting of
the four sides of the square [0, 1] × [0, 1] together with the segments of the vertical lines
x = 1

2
, 1
3
, 1
4
, . . . inside the square. Then X has no simply connected covering space.
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Proof. Let p : X̃ → X be a covering map. Using part one, let A be an open neighborhood
of the left edge with a homeomorphic lift Ã ⊂ X̃.

We claim that there exists K ∈ N so that
[
0, 1

K

]
× [0, 1] ⊂ A. Suppose there is no such

K. Then for every k ∈ N, there exists
(
1
k
, yk
)
∈ X \ A. Since this sequence is bounded, it

has a convergent subsequence, which must converge to a point on the left edge {0} × [0, 1].
But A is open, so X \ A is closed, so X \ A contains its limit points. This contradicts the
fact that A covers the left edge. Thus the claimed K exists. This implies that A contains
the nontrivial rectangular loop

γ =

(
{0} × [0, 1]

)
∪
({

1

K + 1

}
× [0, 1]

)
∪
([

0,
1

K + 1

]
× {0}

)
∪
([

0,
1

K + 1

]
× {1}

)
which lifts to a nontrivial loop γ̃ in Ã. Then thinking of γ̃ as a loop in the larger space X̃,
we see that p∗[γ̃] = [γ̃ ◦ p] = [γ], so the image of π1(X̃) is nontrivial in π1(X). This implies

that π1(X̃) cannot be trivial, so X̃ is not simply connected.

Proposition 0.4 (Exercise 1.3.7). Let Y be the quasi-circle consisting of the closed subspace
of R2 given by a piece of the graph of y = sin(1/x) and the segment [−1, 1] with an arc
connecting the two pieces. Induce a map f : Y → S1 by collapsing the segment [−1, 1] Then
f does not lift to the covering space R → S1, even though π1(Y ) = 0. Consequently, local
path-connectedness of Y is a necessary hypothesis for the lifting criterion.

Proof. We think of Y as the union of three pieces Y = A ∪ B ∪ C, where A is the vertical
segment [−1, 1], B is connecting arc, and C is the piece of the graph of sin(1/x). We have a
quotient map q : Y → Y/A by collapsing A to a point, which we denote by a. Then we have
a map g : Y/A→ S1 by leaving a and B fixed, and projecting down the graph of sin(1/x) to
the x-axis. By doing a rotation if necessary, we can assume that g(a) = 1 (we are thinking
of S1 as the unit circle in C). Then the map f is the composition f = g ◦ q.

Let p : R→ S1 be the usual covering map t 7→ eit, and suppose there is a lift f̃ : Y → R.

R

Y S1

p

f

f̃

For ε > 0, define

Uε = {y ∈ Y : dist(y, A) > ε}
Vε = {y ∈ Y : dist(y, A) < ε}

That is, Uε is an open subset of Y covering almost all of Y , except for avoiding a ε-
neighborhood of A, and V is an ε-neighborhood of A. Note that Uε ∪ V2ε = Y . Then
f(Uε) covers almost all of S1, and f(Vε/2) is a small neighborhood of 1.

pf̃(Uε) = f(Uε) = {x ∈ S1 : dist(x, 1) > ε}
pf̃(V2ε) = f(V2ε) = {x ∈ S1 : dist(x, 1) < 2ε}
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This says that f̃(Uε) is an interval of length just a bit smaller than 2π that avoids f(a) = 2πk,

and f̃(Vε) is an small interval containing f(a) = 2πk. Since Uε and V2ε over lap, the images
overlap. Thus the union

f̃(Y ) = f̃(Uε) ∪ f̃(V2ε)

is a single open interval of length greater than 2π. So there exist α, β ∈ f̃(Y ) such that

|α−β| = 2π. Since f̃(Uε) and f̃(V2ε) are both intervals of length less than 2π, α and β can’t

be in the same one. WLOG assume α ∈ f̃(Uε) \ f̃(V2ε) and β ∈ f̃(V2ε) \ f̃(Uε). Then there

exist yα ∈ Uε \ V2ε and yβ ∈ V2ε \ Uε with f̃(yα) = α and f̃(yβ) = β. Then

|α− β| = 2π =⇒ p(α) = p(β) =⇒ pf̃(yα) = pf̃(yβ) =⇒ f(yα) = f(yβ)

By construction of Uε, yα ∈ Uε implies that yα is not in A. Since f is injective except for
values in A, this implies that yα = yβ, which contradicts the fact that yα and yβ lie in disjoint

neighborhoods of Y . Therefore, no lift f̃ exists.

Proposition 0.5 (Exercise 1.3.8). Let pX : X̃ → X and pY : Ỹ → Y be simply connected
covering spaces of the path connected, locally path conneced spaces X and Y respectively. If
X ' Y , then X̃ ' Ỹ .

Proof. Let f : Y → X and g : Y → X so that fg ' IdY and gf ' IdX .

X̃ Ỹ

X Y

pX pY

f

g

Since X̃ and Ỹ are simply connected, the induced maps (pX)∗ and (pY )∗ are trivial. Then by

Proposition 1.33, there exist lifts f̃ : X̃ → Ỹ and g̃ : Ỹ → X̃ so that the following diagrams
commute.

X̃ Ỹ

Ỹ X X̃ Y

pX pY
g̃

gpY

f̃

fpX

Then notice that

pX g̃f̃ = gpY f̃ = gfpX

pY f̃ g̃ = fpX g̃ = fgpY

that is, the following diagrams commute:

X̃ Ỹ

X̃ X Ỹ Y

pX pY
g̃f̃

gfpX

f̃ g̃

fgpY
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We have the obvious lifts

X̃ Ỹ

X̃ X Ỹ Y

pX pY
Id
X̃

pX

Id
Ỹ

pY

Note that

gf ' IdX =⇒ gfpX ' pX

fg ' IdY =⇒ fgpY ' pY

So we have homotopies ht : X̃ → X and Ht : Ỹ → Y with h0 = pX , h1 = gfpX and
H0 = pY , H1 = fgpY . We have a lift h̃0 = IdX̃ of h0 and a lift IdỸ of H̃0, so by Proposition

1.30 we have homotopy lifts h̃t and H̃t making the following diagrams commute.

X̃ Ỹ

X̃ X Ỹ Y

pX pY
h̃t

ht

H̃t

Ht

That is, pX h̃1 = h1 = gfpX and pY H̃1 = H1 = fgpY . So we have two lifts of gfpX , namely
h̃1 and g̃f̃ . Likewise, we have two lifts of fgpY , which are H̃1 and f̃ g̃. By uniqueness of the
homotopy lifts, this implies that h̃1 = g̃f̃ and H̃1 = f̃ g̃. Hence g̃f̃ ' IdX̃ and f̃ g̃ ' IdỸ , so

X̃ ' Ỹ via the homotopy equivalence f̃ .

Lemma 0.6 (for Exercise (b)). There is no injective group homomorphism Z ∗ Z→ Z× Z.

Proof. Suppose φ : Z ∗ Z → Z × Z is an injective group homomorphism. Let Z ∗ Z be
generated by x, y. Then since Z× Z is abelian,

φ(yx) = φ(y)φ(x) = φ(x)φ(y) = φ(xy)

Because φ is injective, this implies xy = yx, which is not true in Z ∗ Z.

Proposition 0.7 (Exercises (a),(b),(c)). Consider the following four spaces: S1 × S1, S2,
S1 × R, and R2 \ {x, y} where x, y are two distinct points in R2. Then

a) S1 × S1 is not a covering space of any of the other three.

b) R2 \ {x, y} is not a covering space of any of the other three.

c) S2 cannot be a covering space of any of the other three.
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Proof. First note that π1(S
1×S1) ∼= Z×Z, π1(S

1×R) ∼= Z, π1(S2) ∼= 0, and π1(R2\{x, y} ∼=
Z ∗ Z. Also, the universal cover of S1 × S1 is R× R, the universal cover of S2 is itself, and
the universal cover of S1 × R is R× R.

(a) A covering map p from S1× S1 to S2 or S1×R would induce an injective homomor-
phism Z × Z → 0 or Z × Z → Z respectively, neither of which is possible. A covering map
from S1 × S1 to R \ {x, y} would induce an injective group homomorphism Z× Z→ Z ∗ Z.
If such a homomorphism existed, then Z ∗ Z would have a subgroup isomorphic to Z × Z.
However, every subgroup of a free group is free, so this is a contradiction.

(b) A covering map from R2\{x, y} would induce an injective homomorphism from Z∗Z,
but this group does not inject into any of Z×Z, 0, or Z, so R2 \ {x, y} cannot be a covering
space of any of the other three.

(c) If S2 is a covering space of any of the other three, then since S2 is simply connected
it is isomorphic as a cover to the universal cover. Since S2 is not homeomorphic to R2, the
universal cover for S1 × S1 and S1 × R, S2 is not a cover of either of the those. S2 cannot
be a covering space of R2 \ {x, y} because the image of a continuous map from S2 must be
comact, so there is no continuous surjective map S2 → R2 \ {x, y}.

6


